Alternating Trainer
d_grads = self.calculate_gradients(D)
self.train_d(d_grads)
g_grads = self.calculate_gradients(G)
self.train_g(g_grads)examples
"trainer": {
"class": "class:hypergan.trainers.alternating_trainer.AlternatingTrainer",
"d_optimizer": {
"class": "class:torch.optim.Adam",
"lr": 1e-4,
"betas":[0.0,0.999]
},
"g_optimizer": {
"class": "class:torch.optim.Adam",
"lr": 1e-4,
"betas":[0.0,0.999]
},
"hooks": [
{
"class": "function:hypergan.train_hooks.adversarial_norm_train_hook.AdversarialNormTrainHook",
"gamma": 1e3,
"loss": ["d"]
}
]
}options
Last updated