HyperGAN
  • About
  • Getting started
  • CLI guide
  • Configurations
    • Configurable Parameters
  • Showcase
    • AI Explorer for Android
    • Youtube, Twitter, Discord +
  • Examples
    • 2D
    • Text
    • Classification
    • Colorizer
    • Next Frame (video)
  • Tutorials
    • Training a GAN
    • Pygame inference
    • Creating an image dataset
    • Searching for hyperparameters
  • Components
    • GAN
      • Aligned GAN
      • Aligned Interpolated GAN
      • Standard GAN
    • Generator
      • Configurable Generator
      • DCGAN Generator
      • Resizable Generator
    • Discriminator
      • DCGAN Discriminator
      • Configurable Discriminator
    • Layers
      • add
      • cat
      • channel_attention
      • ez_norm
      • layer
      • mul
      • multi_head_attention
      • operation
      • pixel_shuffle
      • residual
      • resizable_stack
      • segment_softmax
      • upsample
    • Loss
      • ALI Loss
      • F Divergence Loss
      • Least Squares Loss
      • Logistic Loss
      • QP Loss
      • RAGAN Loss
      • Realness Loss
      • Softmax Loss
      • Standard Loss
      • Wasserstein Loss
    • Latent
      • Uniform Distribution
    • Trainer
      • Alternating Trainer
      • Simultaneous Trainer
      • Balanced Trainer
      • Accumulate Gradient Trainer
    • Optimizer
    • Train Hook
      • Adversarial Norm
      • Weight Constraint
      • Stabilizing Training
      • JARE
      • Learning Rate Dropout
      • Gradient Penalty
      • Rolling Memory
    • Other GAN implementations
Powered by GitBook
On this page

Was this helpful?

  1. Components
  2. Loss

F Divergence Loss

PreviousALI LossNextLeast Squares Loss

Last updated 4 years ago

Was this helpful?

  • From

  • Source:

  • Configurations:

{
  "class": "class:hypergan.losses.f_divergence_loss.FDivergenceLoss",
  "type": "js",
  "g_loss_type": "js",
  "regularizer": "js"
}

options

attribute

description

type

type

supported types js,js_weighted,gan,reverse_kl,pearson,jeffrey,alpha1,alpha2,squared_hellinger,neyman,total_variation,alpha1. Defaults to gan

string (optional)

g_loss_type

Defaults to type's value

string (optional)

regularizer

Defaults to none. Same options as type

string (optional)

https://arxiv.org/abs/1606.00709
/losses/f_divergence_loss.py
/losses/f_divergence_loss/